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PROPAGATION OF HARMONIC THERMOELASTIC WAVES IN MEDIA 

WITH THERMAL MEMORY 

A. G. Shashkov and S. Yu. Yanovskii UDC 539.3 

We present an analysis of the frequency dependence of phase velocities and damp- 
ing coefficients of harmonic thermoelastic waves in media with thermal memory. 

One of the urgent problems in heat-conduction theory is the investigation of heat-trans- 
fer processes taking thermal memory of the material into account [i]. By thermal memory here 
we mean the influence of the previous history of the thermal state of a body on its current 
state. Of special interest are the thermoelastic waves in such materials, which have propa- 
gation rates and damping coefficients different from the analogous relationships in the 
classical theory of thermoelasticity. Interest here is also stimulated by experiments on 
the propagation of thermal impulses at low temperatures [2] and in connection with high in- 
tensity thermal effects [3], where deviations from Hooke's Law are observed and where heat 
propagates at a finite rate in the form of waves of second sound. 

A study of planar harmonic thermoelastic waves in the framework of a classical model 
was made by Chadwick [4]. Engel'brekht studied propagation modes of thermoelastic waves 
within a model of generalized thermomechanics [5] and within the Green-Lowe model [6]. 

We consider a one-dimensional mathematical model of linearized intercouple thermoelas- 
ticity for isotropic media, taking thermal memory into account [7]: 

co~ (z, t) + ~  (0) ~ (z, t) + I~' (s) ~ (z, t -  ~ ds = ~ (0) 8 ~ (z, 0 + .[~' (s) 8' (z, t - -  s) ~ +• (z, t), 

(1) 
(2~3+ • u" (z, t) - -  p~ (z, t) = ~ 8 '  (z, t) + .[ ~ (s) 8' (z, t - -  s) ds, 

0 

where  a p r i m e  i n d i c a t e s  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  t o  t h e  c o o r d i n a t e  z ;  d i f f e r e n t i a t i o n  
w i t h  r e s p e c t  t o  t h e  t i m e  i s  i n d i c a t e d  by an o v e r d o t .  

We s e e k  a s o l u t i o n  o f  s y s t e m  (1)  in  t h e  fo rm o f  p l a n a r  waves :  

u = u0 exp [i (~z - -  ~t)], 

8 = 8o exp [i (~z - -  ~t)]. (2 )  

Substituting relations (2) into Eqs. (i), we obtain the following characteristic equation: 

(d~ ~ -  ~ )  { c o ~ +  ~ {~ (0) + ~ (~)] - ~ [~(0) + ~ (~)]} + ~ •  ~ (~)] = 0, (3 )  

where  f F ( ~ )  d e n o t e s  t h e  F o u r i e r  t r a n s f o r m  o f  t h e  r e l a x a t i o n  f u n c t i o n :  

fr(e)= [[(s)exp(i~s)~; / - ~ { = ' ( s ) ,  ~'(s), ~(s)}. 
0 

We w r i t e  t h e  c h a r a c t e r i s t i c  e q u a t i o n  (3 )  i n  d i m e n s i o n l e s s  fo rm:  
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(~z_ %z) {n ~ %2+ iN~ % [1 + B (%)1 - -  ~z [1-[- A (~)] } q- en%Z%z[1 + G V (x)l = o, 

Z = co!,.o,, : ~ = ~1Co1%:, oJ,.., = c~c.l~, 

n~ = z,o./g, (o) = d / c ~ ,  o~= g, (o)/co, 

/ v , =  ~ff (o)A (0), r~=~7(o)  a/~cg,  e = ~,,,2/poocg7 
oo  

A (%) = [~z' (s) exp (ixs) ds, ~z' (s) = ~.' ~(s)/s 
"6 

(4) 

oo 

B (2) = .[ [~' (s) exp (izs) ds, 
0 

o o  

F (%) = .[ Y (s) exp (ixs) ds, 
0 

~' (s) = r (s) / f  (o), 

v (s) = v (s)/y (o). 

We shall assume that the relaxation functions have the form 

( ' )  exp --- , #(t) (t) = % . ~,~ 

? ( t ) =  • e x p ( - - - -  

Equation (4) can then be rewritten as follows: 

~_.  ~z {%2 [nl ( l + e) + l] + i% [ l + e q - 1-- ixn~ F e ~  

C exp( ,) 
Te T e 

'1. Ca / 

} 1-- i%n a =0, 
I--I-- i%nli%na "}- i%a-+- na%~-}- i%z - 1-- i)tn2- 

(5) 

( 6 )  

We c o n s i d e r  waves  w i t h  f i x e d  f r e q u e n c y ,  n o t  t a k i n g  i n t o  a c c o u n t  t h e r m a l  r e l a x a t i o n  o f  s t r e s s -  
es  (T O >> ~q,  ~o >> ~e )o L e t  t h e  f r e q u e n c y  ~ be g i v e n  by a r e a l  p a r a m e t e r .  The s o l u t i o n  
i s  t h e n  o b t a i n e d  in  t h e  fo rm o f  a sum o f  i n d i v i d u a l  modes:  

4 ( ; )  
u = exp ( - -  i%m,O ~ ah exp i~hm, , 

(7) 
4 / 

= exp (--i%m,t) ~ bh exp ( i~o) ,  
k =  t 

z 

Co 

where ak, b k are amplitudes; ~k is determined from the solution of Eq. 
to represent the roots of equation (6) in the form 

~k = Co (%/C~ -- iqh/oa,), 

( 6 ) .  It is convenient 

(8) 

~(o) 
1,3 =---+%, 

where  we h a v e  s e l e c t e d  Im ~[o) > O, 
Eqs.  (9): 

where c k is the phase velocity (c k = c0x(Re $k)-Z); qk is the damping coefficient (qk = 
q0 Im~k, q0 = ~,c7 z)" 

We obtain asymptotic formulas for waves with fixed frequency. We denote the roots of 
Eq. (6) for e = 0 in the following way: 

I ) 2,4 =-~-  n1%Z{-i% 1/2, (9)  2- -  i% (nl q- n~) 
, 1 - -  i%n2 

Then for X << 1 we obtain the following relations from 

cl = Co, ql = 0; (10)  

c2_ ~ 1/~-(1 - 2nl--n2 ) 
c o 4 %-[-~ 5/2) ; ( 10a )  

The root $~0) 

2 %+~ 5/2) " ( lOb) 

corresponds to an elastic wave; the root ~(0)corresponds to a thermal wave. 
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For l a r g e  frequencies, for X >> i, we obtain the following from Eqs. (9): 

cx = co, qx = 0; ( l l a )  

c~ 1 1 . q~ ~ 1 1 , 
~.-7=+Ov~ ' 2 V ~  l +  ~z + o  �9 ( l l b )  

Co 

C~=C~ C2 =Cq' q T = O '  q2 = 2 V ~  . . n ~  

For  e > 0 we d e n o t e  by gl  t h a t  one o f  t h e  r o o t s  o f  Eq. (5 )  which has  f o r  X << 1 and e ~ 0 
t h e  a s y m p t o t i c  fo rm ( l O ) , a n d  we d e n o t e  by ~2 t h a t  r o o t  which ,  u n d e r  t h e  same c o n d i t i o n s ,  has  
t h e  a s ~ p t o t i c  form ( l O a ) ,  ( l O b ) .  Then t h e  wave c o r r e s p o n d i n g  t o  t h e  r o o t  gl  w i l l  behave  
f o r  • << 1 as  an e l a s t i c  wave,  w h i l e  t h e  wave c o r r e s p o n d i n g  t o  t h e  r o o t  ~ w i l l  behave  as  
a t h e r m a l  wave.  We s h a l l  a s s ~ e  t h a t  Ek, (k = 1, 2 ) ,  a r e  c o n t i n u o u s  and d i f f e r e n t i a b l e  f u n c -  
t i o n s  o f  X. With t h e s e  a s s ~ p t i o n s ,  f o r  e ~ O, X << 1 we expand t h e  e x p r e s s i o n  f o r  ~k in  
powers o f  • and we o b t a i n  t h e  f o l l o w i n g  a s y m p t o t i c  f o r m u l a s :  

CIc__~. " / 2 ~  { _/~7 ]. 2m~ v l  ~2 '-{-0 (~7 12)1 ; ( 1 2 )  

] , / / _ . ~  { D~ Xz 0(27/2)}; q~qo" ~ 1 + ~ + ( l e a )  

Ca z 1 - -  16[n~(no . - -nx ) - -m~]+msmo  q_o(x3) ;  (125)  
co 32m0 

q~ ~ + o(xS); (12c )  
qo 4 ] /2-  

D1,2 = [m~ + 4me (m~ + n~ +__ mz)l/4mo; me = 2 -4- e; 

ml,4 = (2mod~ + ko)/2mo; m.z = Fotno/4ko; tr~ = F1/4m3o; tn5 = (n 1 -  n2)/n~;. 

Fo=ko [ 8 m ~ k x -  k3 o + 4m~k o (no--2motns)l/4m6o; F1 k ~ -  4m~ (n o - -  2morns) 

no = [(2n~ - -  n~) 2 + 2 (rile - -  1) (2nl - -  n~) + (nle --}- 1)21; 

ko = 2 [too (2nl - -  n2 + n l e )  + e - -  2]; 

ka = 2n~ (n~ - -  nO (n~mo -}- 1 + n~ - -  2nl ~ nle); dl = 2nl - -  n.. + 1 + nle. 

For  l a r g e  f r e q u e n c i e s  • >> 1 we o b t a i n  

c~,2 ~ + o ; 

co V 1 + n l ( 1  + e) + Mr1 + n l ( 1  + e)]2-- 4nl 
(13)  

�9 ql.2 ,~, cl.2 { l + N + e  
qo 4co _ 4- 

where  N = n l / n  2 = ~q/~e"  

We consider now waves of fixed length. Let 
eter. Then the solution in the form of a sum of 

u = exp i~o, 
Co ' k~ 1 

3/ i i  + nl (1 + e)l z - 4ni 

the wavelength be specified by a real param- 
individual modes may be expressed as follows: 

alk exp ( - -  io~,xht ), 

(14) 
5 

~ = e x p ( i ~ ,  z ) ~  blhexp(_io~,%ht)  ' 
Co k=l  

where azk and blk are amplitudes of the waves and • is determined by solving the equation 

X 5 + i #  + - - Z  3 - + l + e +  - -X~zi  • 
n 2 n 1 /7,1/'/,2 /7,1 n~ 

(15) 
• 2 + e +  ,1 + l + e  -4-9~ +~2 + i - - = 0 .  

n 1 n 1 n 1 ng nln~ 
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Fig. i. Dependence of phase velocities c i = CoX (Re $i )-i on 
-I 

dimensionless frequency X = ~, : ni = 3.0; a) e = 0.0114; 

b) e = 0.432; Curve 1 corresponds to the model of generalized 
thermomechanics. Values of n 2 for curves 2, 3, 4, 5, 6, and 
7 are, respectively, 0.I, 0.05, 0.03, 0.02, 0.01, and 0.5. 
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Fig. 2. Dependence of damping coefficients qi = q0 Im~i, 
-i 

q0 = ~,c0 on dimensionless frequency X = ~i: n I = 3.0; a) 
e = 0.0114; b) e = 0.432. Values of n 2 for curves i, 2, 3, 4, 
and 5 are, respectively, 0.01, 0.02, 0.03, 0.05, and 0.i. 
Curve 6 corresponds to the model of generalized thermomechanics. 

We consider modified waves without the quasithermal terms (O ~ = 0), propagating on the side 
on which the spatial coordinate increases. In this case 

u - -  Uo exp [ - -  e , g t  -I- co,~c o '  (z -- f~- 'Cot)] ,  

A (16) 
0 =, uo• - - ~  exp [ - -  ~ , g t  + 0~,~c o '  (z - -  ]~-'Cot) + ~ + 61, 

where the roots of Eq. (15) are represented in the form X = if - ig. 

The connection between the wave deformation and the thermal wave stipulated by it is 
characterized by the coefficient A, which is given by the expression 

where 

A = i ~// P~ + Ppg 
( r l  + Pl  - -  P2~) 2 AF [2 (P3 - -  r2 - -  n2~2) 2 

p,. = r~ -k n.~ ([2 __ gZ) -k n~n2g (g2 __ 3[z), P2 = 1 -- n2g, 

P3 = nin~ (/z __ 3gZ) __ r2 -k 2n2g, r~ : g + ni (/z __ g2), r2 = 1 -- 2nlg. 

(17) 
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Fig. 3 

Fig. 3. Dependence of 
-i 

length g = c0~ , ; e = 
curves i, 2, 3, 4, and 
0.5, and 1.0. Curve 6 
thermomechanics. 

Fig. 4. Dependence of 
sionless wave length 

-1.~! I I 

Fig. 4 

coefficient A on dimensionless wave 
0.0114; n I = 3.0. Values of n 2 for 
5 are, respectively, 0.01, 0.05, 0.i, 
corresponds to the model of generalized 

the shear angle 6 (rad) on the dimen- 
-i 

= c0q~ , ; e = 0.0114; n I = 0.5: Values 
of n= for curves i, 2, 3, 4, and 5 are, respectively, 0.01, 
0.02, 0.03, 0.05, and 0.1. Curve 6 corresponds to the model 
of generalized thermomechanics. 

The thermal wave and the deformation wave are shifted in phase by the angle ~ + 6, where 
is determined from the relation 

tan6 = [2pa (Ps --- r~ - -  n ~  2) q- Pl (rl -~ Pl - -  P2~ 2) ( 1 8 )  

For  media  w i t h  r e >> Tq e x p r e s s i o n s  (17)  and (18)  go o v e r  i n t o  we l l -known  r e l a t i o n s  o f  gen-  
e r a l i z e d  t he rmomechan i c s  [ 5 ] .  

We c o n s i d e r  now t h e  b e h a v i o r  o f  waves w i t h  f i x e d  f r e q u e n c y .  Graphs showing t h e  depen-  
dence  o f  phase  v e l o c i t i e s  and damping c o e f f i c i e n t s  on f r e q u e n c y  were  o b t a i n e d  by . u m e r i c a l l y  
solving equation (6) using the binding coefficient for steel (e = 0.0114) and for polyvinyl- 
butyral (e = 0.432). 

Figure 1 shows the dependence of phase velocity on frequency for various values of the 
internal energy relaxation parameter n 2. Taking into account the additional relaxation mech- 
anism leads to a decrease in velocity in comparison with the model of generalized thermome- 
chanics. Influence of parameter n= is substantial in the frequency range 1.0 < X < 1000.0. 
For large frequencies the phase velocity within the framework of a model which accounts for 
thermal memory ceases to depend on n= and tends towards the value of the velocity in the 
model of generalized thermomechanics. As the binding coefficient e increases, the speed of 
a fast wave increases while the speed of a slow wave decreases. 

Figure 2 shows the dependence of damping coefficients on frequency for various values 
of parameter n z. Taking into account the additional internal energy relaxation mechanism 
leads to an increase in the damping coefficient in comparison with the model of generalized 
thermomechanics. The most notable differences in the curves obtained when compared with the 
curves corresponding to the model of generalized thermomechanics may be seen in the range 
of frequencies X > 1.0. For large frequencies the damping coefficients cease to depend on 
the frequency and tend towards a finite limit. The limiting values of the damping coeffi- 
cients decrease with an increase in the internal energy relaxation time. With an increase 
in the binding coefficient there is an increase in the damping of a fast wave and a decrease 
in the damping of a slow wave. 

Figures 3 and 4 show the variation of the binding coefficient A and the shear angle 6 
as functions of the wave length ~ and the parameter n2, which characterize waves with fixed 
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length. Taking into account the additional internal energy relaxation mechanism leads to 
a decreas]e in the binding coefficient and an increase in the shear angle in comparison with 
the model of generalized thermomechanics. With a decrease in the internal energy relaxation 
time, the binding coefficient decreases and the shear angle increases. The difference in 
the binding coefficient may be observed for $ > 1.0 while the difference in the shear angle 
may be observed for $ > 0.i. 

Thus, taking thermal memory into account is similar to taking relaxation of thermal 
flow into account [5] and taking rate of change of temperature into account [6], necessary 
for large frequencies or for small wavelengths. The relations we have obtained for veloci- 
ties and damping of thermoelastic waves may find application in the experimental verifica- 
tion of thermoelastic models for the establishment of explicit expressions for heat flow and 
internal energy relaxation functions. 

NOTATION 

z, coordinate; t, time; ~, temperature; ~(t), thermal flow relaxation function; ~(t), 
internal energy relaxation function; ~(t), function of temperature relaxation of stresses; 
Cv, volumetric heat capacity; Ki, linearization coefficients; p, density; u, displacement; 
~, wave frequency; e, binding (compendency) coefficient; ~q, thermal flow relaxation time; 
Te, internal energy relaxation time; To, time of temperature relaxation of stresses; ~, 
thermal conductivity; N, wavelength. 

it 

2. 
3. 
4. 
5. 

6. 
7. 
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SELF-SIMILAR SOLUTION OF THE PROBLEM OF CONSOLIDATION 

AND THAWING OF FROZEN SOIL 

A. F. Klement'ev and E. A. Klement'eva UDC 624.139.264:536.42 

The article presents a new mathematical model of the process of thawing of 
frozen soil taking consolidation into account. The following solutions were ob- 
tained: the self-similar one for the unidimensional biphase problem and an ap- 
proximate analytical one for the simplified single-phase problem. 

In the calculation of engineering structures erected in soil massif that thaws under 
their thermal effect, it is usual to take into account the thermal regime of the buildings 
and the position of the boundary between thawed and frozen zones of the accommodating soil 
in dependence on time [1-3]. Thus it is implicitly assumed that the heat source is the en- 
gineering structure and that it is fixed. In reality, however, there occurs filtering con- 
solidation of the thawing soil; as a result the heat source moves according to the law of 
increasing subsidence [4] which takes into account the variable thickness of the consolidat- 
ing soil layer. 
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